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Fuzzy Order Statistics and Their Application 
to Fuzzy Clustering* 

Paul R. Kersten, Member IEEE 

Abstract - The median and the median absolute deviation (MAD) are robust statistics based 

on order statistics. Order statistics are extended to fuzzy sets to define a fuzzy median and 

a fuzzy MAD. The fuzzy c-Means (FCM) clustering algorithm is defined for any p-norm 
(pFCM), including the /, norm (1FCM). The 1FCM clustering algorithm is implemented 

via the alternating optimization (AO) method and the clustering centers are shown to be 

the fuzzy median. The resulting AO-1FCM clustering algorithm is called the fuzzy c- 

Medians (FCMED) clustering algorithm. An example illustrates the robustness of the 
FCMED. 

I. INTRODUCTION 

Robust statistics are designed to be resistant to outliers. Two examples are the median for 

estimating the center of the data and the median of the absolute deviations from the median 

(MAD) for estimating the dispersion of the data. These statistics do not apply directly to fuzzy 

sets since both are based on order statistics, which implicitly assume the data belong entirely in 

one set. These statistics are extended to apply to fuzzy sets and then used to implement an AO 

version of the 1FCM clustering algorithm, where the membership functions (MFs) are given by 

[1] and the cluster centers are fuzzy medians. This version is called the fuzzy c-medians 

(FCMED) clustering algorithm since the weighted median plays the same role as the weighted 

mean in the FCM. The FCMED algorithm improves clustering on outlier-ladent data sets, where 

the clusters are generated by heavy-tailed distributions. 
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Fuzzy medians are a special case of weighted medians, where the weights associated with the 

data points may be interpreted as memberships. According to Bloomfield and Steiger [2], 

weighted medians were first named by Edgeworth [3] circa 1887. The 1FCM clustering 

algorithm requires the minimization of a functional that consists of the weighted sum of absolute 

differences with respect to the clustering center. Jajuga [4] seems to be the first to have 

formulated the 1FCM minimization as a regression problem, which then allowed him to apply 

the solution found in [2] attributed to Laplace circa 1789. The optimal cluster center is the 

weighted median, although Jajuga [4-5] does not seem to mention that his solution is the 

weighted median. The fuzzy median set forth in this paper was first derived by the author in [6- 

7] and used to independently derive the 1FCM centering statistic [8]. The weighted median 

appears in numerous applications. For example, it is used in risk management [9] and image 

processing [10]. In regression, the weighted median provides a robust slope estimate [11]. 

Another example is in the remedian approximation to the median [12]. Fuzzy clustering using 

the ^norm is not new and has been researched by others [1,13]. In [13] the authors use a 

reformulated version of the FCM and apply a general search method to find the cluster center 

and memberships. In [1] the AO-1FCM is used, where the memberships are solved for explicitly 

as in the FCM and the cluster centers are determined by a linear programming algorithm. The k- 

medoid method is a collection of algorithms that may use the tx metric and could include a k- 

median hard clustering algorithm[14]. Unfortunately, the k-median is also another name for the 

k-medoid method, leading to some confusion [14, p. 72]. 

This paper is organized as follows: Section II contains a definition of fuzzy order statistics as 

well as the extension of the median and the MAD to fuzzy sets. In Section III, the quantiles are 

extended to fuzzy sets. The FCMED clustering algorithm is presented in Section IV. The 

conclusions are contained in section V. 



II. THE FUZZY MEDIAN AND THE FUZZY MAD 

Robust statistics are resistant to outliers because they are designed assuming variations to the 

underlying statistical distribution will occur [15-18]. Often, a robust statistic is rated by its 

breakdown point, which is loosely defined as the fraction of outliers that must be present before 

the statistic no longer provides a meaningful estimate. Just as the median is a robust alternative 

to the mean, the MAD is the robust alternative to the standard deviation. Both statistics have a 

high breakdown point. Throughout this section, the data samples are assumed to be one- 

dimensional. 

The median is defined on the data set X ={xi,x2,...,xN}, where each element is a real 

number *,. eft. The ordered N -sample is denoted by {xa),x{2),...,xiN)}, where 

x(l) <*(2) <...<xm are collectively defined as the order statistics [19, p. 22]. Here, the median 

of X  is defined to be x(M) if N = 2l + 1 and to be [x(l)+x(l+l)]/2 if N = 21. The median 

represents the halfway point of the samples, having an equal number of samples smaller and 

larger than itself. Accordingly, half of the points to the left of the median must be outliers before 

the median is pulled toward the left, which explains why the finite breakdown point of the 

median is one-half [15]. For vector samples, xk e R
p, p >1, the definition is applied to each 

dimension of the sample and the median vector is defined to be the vector of individual medians. 

To   construct   the   MAD,   take   the   data   set   X    and   form   another   data   set   Y = 

[| xl -med(X) |,...,| xN -med(X) |}, find the median of Y and then scale it. For this paper, the 

MAD is defined as mad(X) = med(Y)/0.6745, where the constant 0.6745 adjusts the dispersion 

measure to be 1 when the sample is Gaussian with unit variance. Intuitively, one folds the 

centered data {x,. -med(X)}"=l about 0, then finds the median of the set of positive deviations 

from the median. The breakdown point of the MAD is also one-half [15, pp. 105-107]. 

The median and the MAD are defined on crisp sets, which implicitly assumes that each data 

point has membership 1 in the set. The implicit role of the sample memberships is evident when 



the median m is defined as the solution of min P' .  (m) = min V | xk - m I [18, pp. 233-234]. An 
meR y m£R  f-* 

informal solution is found by taking the derivative of Pcrjsp (m) with respect to m and setting it 
N 

equal to zero and multiplying though by -1 giving ^sgn(xt -m) = 0. If N = 2/ + 1, the unique 
jt=i 

solution is m = x{l+l) and if N = 21, the derivative is zero for any me [x(l),x(l+l)). In the latter 

case, the root m is not unique, but is made so by arbitrarily choosing a suitable point within this 

interval, e.g., the average of x(lH) and x(l). Strictly speaking, this solution is not proper since the 

derivative of |xk -m\ at xk=m does not exist; however, it is easily repaired [18, p.234]. 

Following [17], define m = (m*+m")/2 where rn =sup{m\Pcrjsp(m)>0} and rn* = 

inf{m | Pcrisp{m) < 0}, so that one avoids the problem of taking the derivative at the jump point. 

The informal solution is used in other sections because it is shorter and easily formalized. 

The definition of fuzzy order statistics requires two sequences of real numbers: the data X 

and their corresponding memberships U = {uvu2,...,uN}. A permutation per{l,2,...,N) of the 

integers {1,2,...,N] is needed to order X . The fuzzy order statistics are collectively defined as 

x
Per(i) - xPer(2) - • • • - xPer{N) along        with        their        corresponding        memberships 

{uper(i)>uper(2)>--->u
Per(.N)} • Since the same permutation that ordered the data vector X is applied 

to U, the association of data point to its membership is retained. 

The functional definition of the median generalizes to fuzzy sets. For the c -class problem, if 

uik is the membership of xk  in class i, then mi  solves the minimization of this weighted 

objective functional min P. rrv (m,.) = min V «,.. \xt -m;\. The solution m, is a weighted median 
k=l 

applied to the i - th fuzzy set where the weights are found in the definition of the fuzzy set 

X,. = uil/xl+ui2/x2+... + uiN I xN. Here, the statistic mi is called the fuzzy median of the 

i-th   class. The derivative of -^^(w,)   with respect to  mi   is given by  ^^ {mi) = 
N 

^jUjk sgn^ -m(.) and its root mi is the fuzzy median. When the root is not unique, it is made 
*=i 

so by averaging the domain values where the derivative is zero. So the fuzzy median is a 



weighted median where the weights are the membership of the sample points in the fuzzy set. 

This statistic reduces to the median when the weights are equally likely. 

As an example of the fuzzy median, consider a small one-class data set with its associated 

membership vector given in Table 1 and the plots of, the P and W functions in Figure 1. 
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Figure 1. RHO (P) and PSI (*¥') functionals showing the fuzzy median value. 

TABLE I 

Example Data Set X With Corresponding Membership Values. 

X 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

u 0.2 0.4 0.1 0.6 0.9 0.7 0.3 0.4 

The fuzzy median is 5.0, which is not equal to the classical median of 4.5.  In this example the 

fuzzy median is unique because the root is unique. 



The MAD can also be reformulated into the functional form minTl!*. -m\-n\, that is 

minimized with respect to 77 and the resulting statistic defined as mad = r] 10.6145. The mad 

estimator requires the median m be known beforehand. For a fuzzy data set, the median does 

not exist; however, the fuzzy median does. For the i-th fuzzy data set Xi, one can define the 
N 

fuzzy MAD in terms of the fuzzy median m; and the functional minV MJIAV -m, 1-77,1. The 

fuzzy MAD is given by fuzmadi = r\i 10.6145. From an implementation point of view, one first 

forms the fuzzy median mi, uses this to construct a new fuzzy data set Yt = un /\xl-mi\ + 

unl\x2 -mi \+... + uiN l\xN -mi |, finds the fuzzy median on this set, then scales it. For the 

example in Table 1, the MAD is 2.0 whereas the fuzzy MAD is 1.48, since the membership is 

highest around the central values of the sample. For a p-dimensional data, one applies it on each 

component separately. 

Although defining the fuzzy median and fuzzy MAD is only a simple modification of the 

crisp statistics, it allows the important application of robust statistics to fuzzy sets. The median is 

also a Huber M-estimator  [16]  implicitly defined via functionals  of the form   P(m) = 
N 

^ p(xk - m), where p satisfies certain boundary, symmetry, and non-negativity conditions. 
*=i 

Because these summands can be weighted with the appropriate sample memberships, this whole 

class of M-estimators applies to fuzzy algorithm development. 

III. THE FUZZY QUANTILES 

In this section, the weighted M-estimator functionals are applied to derive fuzzy quantiles by 

defining p(x) asymmetrically. First, the crisp quantiles are redefined using P(m). Define 
px,   ifx > 0 

I - qx,   otherwise 



where for the sake of definiteness it is assumed that p + q = l, then the p-th quantile is the 
N 

value of m that minimizes P(m) = ^ p(xk - m). The minimum of P{m) is found by taking 

N 

derivatives. Define  X¥(m) = -P'(m) = ^?p'(xk -m) = '£jiy(xk -m)   where  p\x) is defined in 
<t=i *=i 

terms of indicator functions 

iA{X)A
1, ifxGA- AK

 
J   { o,  ifxeA 

Then  ip(x) = p'(x) = pl{x>0]+±(p-q)I[x=0]-ql[x<0], is a step function located at  x = 0. If 

p + q = l, the jump size is 1, going from -q to + p at x = 0. ^(m) is a monotone non- 

increasing function  that starts at   pN   when   m < xm   and reaches   - qN   when   m > x{N). 

Intuitively, this is a method of counting since at each data point xk, as one moves from left-to- 

right on the real number line, the functional T(m) decreases by one. So, if p = q = \l2, then the 

root of the equation T(m) = 0 occurs when half of the points are to the left of m and half are to 

the right. When p = l/4, then pN = NIA and -qN --3N/4, the root m occurs where one- 

quarter of the samples are to the left and three-quarters are to the right; that is, m is the first 

sample quartile, ignoring the uniqueness of the root. For large N , it can be shown [19, p.36] that 

if X consists of independent and identically distributed random variables (iidrv's) with 

distribution Fx , then E(x(r)) ~ F^l(r/(N + l)). If r = pN, then E{x(r)) is approximately equal to 

the p-th quantile or for large N, the sample quantile approaches the population quantile. 

The fuzzy quantiles are defined by modifying the functional  P(m)   to be  P^ (jni) = 
N 

miny£juikp(xk-mi) and then with x¥fuzzy(mi) = -P'filzzy(mi) solving the equation x¥fiizzj,(m) = 
k=l 

N 

^ uik if/{xk- m;) = 0. Here mi is the p-th quantile of the / - th set. When p = q = l/2, then the 

root of the equation ^fuzzy {mi) = 0 still occurs when the "number of points" to the left of mi 

equals the "number of points" to the right. But in this new context, the "number of points" is 

interpreted to be the "sum of their fuzzy cardinality." The fuzzy cardinality of the points in the 
N N 

i-th fuzzy set N,. is defined as Af,. = ^wIJt =]^ «,-(■**) where the total number of samples is 
k=\ *=1 



given by N = ^JNi. So to find the fuzzy median in the set of ordered points \xper{i) ^, sum the 

corresponding memberships y^per{i) f from left to right until half of the fuzzy cardinality is to the 

left of median and half is to the right. In like manner, when finding the first fuzzy quartile, one- 

fourth of the fuzzy cardinality should be to the left of the point and three-fourths should be to the 

right. Viewed in this manner, fuzzy quantiles possess the same strong intuitive appeal as their 

crisp counterparts. For the same data given in Table 1. Here Nt is 3.6 so pNi =0.9 and 

- qNi = -2.7. Again, the fuzzy sample-quartile value of 4 is not the same as the crisp sample- 

quartile value of 2, if the definition of p-th sample quantile [19, p. 41] is X(r), r = \Np~\. To 

maintain consistency with the fuzzy definition of quantile, the sample quantile convention 

adopted here is X(r), if pN is not an integer, and [X(r) +X(r+l)]/2 if pN is an integer. Then if 

the data memberships are all 1.0, the fuzzy quartile and the crisp quartile will coincide and for the 

example of Table 1, the quartile will be 2.5. 

IV. FUZZY CLUSTERING 

The FCMED clustering algorithm is presented after first stating the FCM clustering 

algorithm. As with the FCM, the FCMED algorithm obtains by first minimizing the objective 

functional with respect to the MFs and then with respect to the centering statistic. The MFs for 

the FCMED are stated and the centering statistic shown to be the fuzzy median. 

A. Fuzzy c-means (FCM) clustering algorithm 

The FCM is a practical clustering algorithm that generalizes the crisp c-means algorithm [20- 

21]. It generalizes by replacing the class assignment with a membership vector whose elements 

represent the membership of the data points in each of the classes. The algorithm produces a 

fuzzy partition of the data into c classes, i.e., each point has a membership vector or a fuzzy unit 



vector (fit vector) associated with it, rather than a single class assignment.  The algorithm is an 

unsupervised learning technique. The following description of the FCM is based on [20]. 

Consider N data samples forming the data set denoted by X ={xl,x2,...,xN), where each 

sample   X{GR
P
   is a p-dimensional real vector.  Assume there are   c   classes and  uik = 

Ui(xk)e [0,1] is the membership of the k - th   sample in the / - th   class. Each sample point 
c 

xk satisfies the constraint that ^uik = 1. The set of exemplars or prototypes for the c clusters is 
I=I 

given by v = (v,, v2,..., vc). The FCM algorithm minimizes the functional 

W.v) = £5>,X! where dik =||v,.-xk\\2 
k=l i=l 

subject to the above constraint. The AO method is one technique to achieve the minimum. The 

power mc of the membership is called the weighting exponent. Using the memberships U , class 

exemplars are calculated from the data points. The class exemplars are then used to calculate 

new memberships. This procedure is repeated until some form of convergence occurs. A detailed 

version of this algorithm is given in [20, p. 66]. The FCM exemplars are linear statistics or 

weighted averages of the data points where the weights are scaled versions of the memberships. 

Unfortunately, linear statistics are known to be vulnerable to outliers [22]. 

B. Fuzzy c-Medians (FCMED) clustering algorithm 

For the FCMED, the £{ objective functional is [9]: 

J{U,v) = fjJju:k<dik where dik = |v, -xk\[ =XKO')-v,.(;)| 
k=\  1=1 y=l 

where |«| is the lx metric that is used throughout this subsection. Following [20, pp. 65-69], the 

derivation for the weight uik carries through with d\ replaced by dik. The optimal memberships 

are then given by: 



% = v 
c f     Y/(n,c_1) 

K   '  J 

for the samples that do not fall on the exemplars [1, p. 547]. Samples that that fall too close to 

exemplars are handled in the same way as with the FCM [20]. When the optimum exemplars are 

sought, one is interested in minimizing  J{U,v)   with respect to  v  and in this case, one 
N     c 

minimizes J(U,v) = ^ X"<*' XK 0') ~ v; 0")| by first rewriting it as 

J(U,v) = f,fJJ(U,vi(j),i,j) where J(U,vlUUJ) = f,u£\xkU)-vlU% 
i=l   j=\ k=\ 

The functional is separable in j (the dimension) and i (the class) since each of the functions 

J(U,Vi(j),i,j) in the objective functional J(U,v) is a function of only one variablev;(j) [23, 

p.8]. Hence, one minimizes J(U,v) by minimizing each component J(JJ,Vi(j),i,j) separately. 

For each class / and coordinate j, the minimum of J(U,Vi(j),i,j) with respect to v(.(y') is the 

fuzzy median. Jajuga [4] also argues that J(U,v) is separable because J(U,vt{j),i,j) contains 

only one unknown v; (j). In section II, the fuzzy median (weighted median) with memberships 

(weights) w("
c for the i-th class and the j-th coordinate was shown to minimize 

JiJJ^^j)^,]). Doing this for each coordinate j = l,...,p gives the centering vector v(. for 

class i. Repeating this for each class i, one produces the cluster exemplars v that minimizes 

J(U,v) with respect to v. The fact that the fuzzy median (weighed median) is the optimal 

centering statistic for the AO-1FCM does not seem to be widely known. Although the objective 

functional can be minimized by a general optimization procedure [1], the fuzzy median makes 

the AO scheme more intuitive. When the cluster distributions are light-tailed, say Gaussian, then 

the asymptotic relative efficiency of the mean with respect to the median suggest that the FCM 

should do better than the FCMED [19, p.283]. Here, the greatest concern is outliers, so 

estimation efficiency of the centering statistic is not addressed. 

10 



To compare the FCMED algorithm to the FCM, the FCMED was tested on both Gaussian 

and Cauchy samples. As one expects, the FCMED exemplar trajectories for the Gaussian 

clusters are quite similar to the FCM trajectories. However, for the Cauchy sample, the FCM 

does not converge to the cluster centers, while the FCMED does. Figure 2 illustrates the FCMED 

applied to the two-dimensional Cauchy antipodal clusters located at [±1.27,0], mc =1.25. The 

exemplars were initialized as [0,±1]. 
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Figure 2 FCMED exemplar traces for two Cauchy clusters 
located at antipodal positions, (outliers not shown due to scale.) 

The FCMED algorithm has the same algorithmic structure as the FCM with the AO method. 

The FCMED algorithm follows: 

1. Fix c, the number of classes such that c e {2,..., N -1}. 

Choose the ^, metric in Rp and fix the weighting exponent mc e (1,°°]. 

Initialize the membership matrix denoted by C/(0) 

2. Construct the   c  exemplars   v;   for  / = {l,...,c} by finding the fuzzy median with 

memberships u^c for each class. Each class exemplar v,. is p-dimensional so v,. (j) must 

be found for each j = {l,..., p}, using just the j - th  component of xk. 

3. Update the memberships uik in the membership matrix with 

11 



«* = !/ 
• <d, ^--" 2 , provided of course that none of the dJk are zero. 

In the latter case, the uik are assigned as they are in the FCM algorithm [20, p. 66]. 

4.   Compare the last two membership matrices, UU) and U(l+i). When they are sufficiently 

close, terminate the algorithm; otherwise, return to step 2. 

Note the strong structural similarity of the FCMED and FCM algorithms. The fuzzy median may 

be calculated by sorting the sample values. In this case, the time complexity for each exemplar 

v,. is easily shown to be 0(pN log N), since for each of the p-dimensions of the sample vectors 

it takes 0(N log A0 operations to sort the data. There are c classes so the time complexity for 

Step 2 is 0(cpN log N). The space complexity is O(N), which for large data sets like images 

can be quite onerous. More refined algorithms for calculating the weighted median can reduce 

the time complexity [24, p. 193] and approximations to the fuzzy median can reduce the space 

complexity [25]. A heavy computational price is paid to replace the FCM with the FCMED. 

V. CONCLUSIONS 

The fuzzy median was defined and shown to be weighted median where the weights may be 

interpreted as memberships. Functional definitions of the median and the MAD provided the 

formulation to extend these statistics to fuzzy sets. By weighting the functionals with the 

memberships, both statistics naturally extend to fuzzy data sets. The quantiles were extended to 

the fuzzy data sets using the same approach of explicitly weighting the defining functionals. The 

intuitive appeal of the fuzzy quantiles is retained by interpreting counting as summing 

memberships. The fuzzy median and the fuzzy quartile were illustrated in separate examples. 

The AO-1FCM is a special case of the FCM clustering algorithm that uses an alternating 

optimization method and the £l norm. In this case, the cluster exemplars are shown to be the 

fuzzy medians and the resulting algorithm called the fuzzy c-medians (FCMED) clustering 

12 



algorithm because of its strong similarity to the FCM. This fuzzy median was linked to Jajuga's 

solution formulation for the cluster exemplars as a regression problem, which yielded the 

weighted median as the cluster center via the work of Laplace. The FCM and the FCMED 

clustering algorithms have similar performance for lightrtailed clusters, but quite dissimilar 

performance on heavy-tailed clusters. Both algorithms quickly converge when the data is light- 

tailed and the number of cluster is fixed. Outliers or heavy-tailed clusters that cause convergence 

problems for the FCM, are better handled by the FCMED. When the data is unknown or not well 

behaved, the FCMED is a robust alternative to the FCM with a heavy computational penalty. 
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